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Abstract

Rotating elements are essential components in the industrial sector, where vibration is a common
occurrence. Vibration has its bad impacts, which include damages, disturbances, noise, etc. As a result,
every industry must quantify the effect of vibration and keep it below a certain threshold. To study the
effect of vibration, a system is developed that consists of power transmitting elements such as a belt-
pulley mechanism, spur gear, ball bearing, shaft, and a motor for power production. This rotating
element's vibration is analyzed by a vibration analyzer, which contains three types of sensors that
measure the vibration characteristics along three axes (X, Y, and Z) at a particular point and return the
vibration characteristics in waveform and spectrum at different points. This article describes the
vibration of the shaft during shaft misalignment, mechanical looseness, and mass unbalancing. During
this condition, the vibration level at a specific point crosses the 1SO standard. After shaft alignment,
mass balancing, and using damper materials, these vibration levels reduce to a certain level lower than
those of the previous conditions, which have been studied in this paper. The vibration analyzer evaluates
these vibration levels to determine whether or not the machinery is in optimal condition. This study
provides analysis and design engineers with practical guidance for considering noise and vibration in
gear and belt drives.
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Introduction

Vibration analysis is an extremely important technique for diagnosing mechanical vibrations in
machines. It is based on the high information content of machine vibration signals, which serve as an
indicator of machine condition and are used for fault diagnosis. Vibration analysis is fundamental in a
predictive maintenance program, being widely used for the detection and monitoring of incipient and
severe faults in machinery parts, like bearings, shafts, couplings, rotors, motors, etc.

Srinath and Das [1] were the first to analyze the vibration of a non-rotating, simply supported beam
carrying a mass with rotary inertia placed at an arbitrary location on the span. Chivens and Nelson [2]
investigated the influence of disk flexibility on the bending natural frequencies and critical speeds of an
axisymmetric rotating shaft-disk system. Lee and Chun [3] developed the assumed modes method to
investigate the effect of multiple flexible disks on the vibration modes of a flexible rotor of varying
annular cross-section. Nelson and McVaugh [4] developed a finite element model to include the effects
of rotary inertia, gyroscopic moments, and axial load of a rotor-bearing system with rigid disks. Qin and
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Mao [5] developed a shaft element model adding torsional deformation for accurate estimation of the
dynamic behavior of the coupled transverse-torsional motion that exists in large power systems Parker
and Mote [7] solved the eigenvalue problem for a non-spinning coupled disk spindle-clamp vibration
with the use of extended operator formulation. Later, Parker et al. extended that work to spinning
asymmetric [8] and axisymmetric [9] disk-spindle systems.

All of these earlier studies [1-9] did not combine various vibration-producing devices (such as gears,
rotating shafts, rotating masses, bearings, belt pulleys, and motors) in a single setup. However, every
piece of this equipment is a part of the system we've constructed.

Vibration analysis is commonly used to identify issues such as imbalance, misalignment, bent shafts,
faults in rolling bearings, eccentricity, resonance, sloppiness, rotor rub, fluid-film bearing instabilities,
gear faults, and belt/sheave issues.

Vibration may influence the durability and reliability of mechanical systems or structures and cause
problems such as damage, abnormal stopping, and disaster. Vibration analysis is one such tool, which is
much preferred by people. It acts as a measurement tool and evaluates any failure in rotating machine
equipment. Several technologies are used to measure and diagnose machine health. Two of the most
important are vibration testing and infrared thermography. The use of a vibration analyzer is one of the
simple, economical, and convenient methods to determine vibration level.

This project aims to realize the phenomenon of vibration and it also aims to design and construct the
active vibratory system. Finally, a vibration analyzer is used for vibration measurement. In this paper
vibration level of our developed system before misalignment of the shaft, mechanical looseness, and
mass unbalancing, and after alignment of the shaft, mechanical fittings, and mass balancing are
presented. On the basis of experimental data performance results are explored.

VIBRATION ANALYZER

For model structure and vibration measurement, some elements are used i.e. vibration analyzer and
sensors. The CSI 2140 is the most complete tool for assessing and predicting machinery health. The CSI
2140 builds on Emerson’s industry-leading CSI 2130 to make route-based maintenance more efficient
and predictive diagnostics more usable. Influenced by human-centered design principles and built with
users in mind, the CSI 2140 meets both the usability and advanced diagnostics requirements of
reliability engineers.

Fig 4.1: Front panel of CSI analyzer [10].
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set-up design

With some notion of the arrangement of machine elements, we may begin the calculations. From data,
such as the work done or power consumed, we compute forces on each part for a sequence of positions
of the machine’s cycle, using the principles of machines.

Calculations of different parts of the set-up

A. Gear Indexing

Indexing is an operation of dividing a periphery of a cylindrical workpiece into equal divisions with the
help of an index crank and index plate.

For plain indexing,

40 4D
the number of turns of the crank for each division, T = & % , Where N indicates the number of divisions

required.

For driver gear (pinion) let, N = 60
Outside diameter, P2 Dz =5 in

40 40 40 40

Number of turns for each division, T= v & =s0s =22
So, the required number of turns for each division for pinion,

T=32"132" 13 Za020
Therefore, for pinion it is decided to use plate-3 and for each division, crank should be turned for 26

holes of the 39-hole circle.

Again, for driven gear let, N = 44

Outside diameter, D:0:= 3 in
40 40 40 ﬂ E E

Number of turns for each division, T= 5 & = 4 as = 11 11
: . : 30 2 3w
So, the required number of turns for each division for driven gear, T =11 " 311 "2 = 23 32

Therefore, for driven gear it is decided to use plate-2 and for each division crank should be turned for 30
holes of the 33-hole circle.

B. Calculation of Gear Terminology

Let, outside diameter of pinion, P:0:=5
. . P :EP _ N+2 Gp+z e+
Diametral pitch, " ~ 2, "® "2, =75 5 =124=12
0.L57 Q15T
Clearance, C= 72 7z =0.013 in

Now, dedendum = addendum (A) + clearance (C)

LLs7 LISY
= P2 Pz =0.0961n
Whole depth, Wz Wz = 22 725 =0.179 in
Root diameter, D Dr= Dy D, (2xW:Wy) = 4,64 in
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Working depth = Wz Wz - C =0.179 - 0.013 = 0.166 in

C. Horse Power Calculation
Let, teeth no of pinion, Vs = 60:N, = 60: Face width, b= 1"; = 1" diameter of pinion, Ps =35": 0 = 3"
revolution, "»"»=1150 rpm.
5 aapm_ 5 . ..
Speed, V = wDynaV = whynp = W X 17X HS0=mx o 11501505 35 fpm
As Vi, = 2000fpm. As W, = 2000fpm. Commercially cut [11]

_ BDD+ Wy _ BDD+ Wy
Dynamic load Fa=—0n *RE =0 %5k
F, = 3.51F, F, = 3.51F,
Ultimate strength, S« = 20f 5. = 20f (For ASTM 20);
_ s - s :
5.=20 +20 x 5.=20 420 X —_ 9g ksi

Again, endurance strength 3» = 0.45,5, = 0.45,=0.4x28 =11.2 ksi

But from the table, 5'» = 10 ksi.5"; = 10 ksi. which is more conservative.
Lewis form factor,lr’?_, = 0.713 [for 20° full depth,load at middle] ¥, =0.713 [for 20° full depth,load at middle]

Strength reduction factor,
Ky = 2 [for load at midle Ky = 2 [for load at m:‘n’{g]

Np
K
=60/5=12
Again,
A= ih = x
_ 1D.><JTDDD>(1>.<D."}'13
2x12
=297.08 Ib.
Now,
F = Ngphy
Or, 297.08=2xF:
Therefore,
F2=148.54 Ib.
Again,
F1=351xF;
£ =42.321b.

Fp Vi

Now, hp = 33000

42,32x1505.35 42.32x1505.35

33000 - 33000

=1.93
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Fig.5: Experimental setup with vibration analyzer.

Results
A. Vibration Level Due To Shaft Misalignment And Mechanical Looseness

In the developed system there are two shafts that are connected parallel through spur gear. If the shafts
are misaligned against each other, the vibration level will be increased. Mechanical looseness is also
responsible for the increment of vibration. Non-rotating looseness causes the highest vibrations in the
direction where the stiffness is the smallest. The stiffness is usually the least in the horizontal direction,
but it depends on the physical layout of the machine. The loose foundation may be caused by loose bolts,
nuts, or cracks. The following curves are found which were taken during the experiment.

oG

Fg 7.2: Vibration measurement at bering 2.
Spectrum plot with amplitude and frequency data at 2" bearing

I : A
Spectium

0 3000 6000 9000 12000 15000
M

Overall: 4.78606
Frequency Data Frequency Data Frequency Data Frequency Data

1555.3 1.43747 2803.7 0.38515 2881.6 0.40051 3008.0 0.42822
3108.2 0.55254 3218.3  0.40253 33114  0.46047 34219 2.08407
3500.3 0.48087 3572.0 0.52971 3777.0 0.97141 3834.1 1.16651
3873.5 1.23553 4022.3  0.46697 4095.8 0.45911 4116.6 0.45677
5998.5 1.26777 9124.3 0.56388 9421.4  0.43787 11408.2 0.50841

e Acquired: 13/11/17 11:14 AM
Fig 7.3 : Vibration level of sensor A at bearing 2 (misalignment and mechanical looseness).
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Acquired: 13/11/17 11:14 AM
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Fig 7.4: Vibration level of sensor B at bearing 2 (misalignment and mechanical looseness).
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5998.6  0.70801 9124.5 0.75871 94209 0.96526 11408.1 0.3251
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Fig 7.5: Vibration level of sensor C at bearing 2 (misalignment and mechanical looseness).

Fig 7.6: Vibration measurement at bearing 3.
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Spectrum plot with amplitude and frequency data at 3" bearing

mm/sec RMS
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3909.9 0.37125 3949.4 0.25875 40046  0.23259 4078.5 0.2892
44952 03732 4598.5 0.24442 5617.4 0.27714 5912.0  2.93885
5973.7 0.24379 70369 0.28401 10114.7 0.23842 11236.8 0.31927

Acquired: 13/11/17 11:17 AM he

Fig 7.7: Vibration level of sensor A at bearingwé (misalignment and mechanical looseness).
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35549 147334 36250 0.45877 3681.4 0.63693 39114  0.42069
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Fig 7.8: Vibration level of sensor B at bearing 3 (misalignment and mechanical looseness).
Acquired: 13/11/17 11:17 AM A
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Fig 7.9: Vibration level of sensor C at bearing 3 (misalignment and mechanical looseness).
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By analyzing the curves, it is evident that the indicated vibration level is not at the desired operating
condition, i.e. it is surpassed the satisfied ISO limit. Due to this reason, to satisfy the ISO limit, we have

to decrease the vibration limit.

Velocity Range Limits and Machine Class

15 to 75kW | >75 kW(Rigid) | >75kW (Soft)

11 Class III Class 1V

Satisfactory

Alert Unsatisfactory S EEE

Alert Unsatisfactory Setfelony

Alert Unsatisfactory

Alert

Velocity
rgrl\qés in/s Peak Up to 15kW
Class I
0.28 0.02
0.45 0.03
0.71 0.04
1.12 0.06 .
180 0.10 Satisfactory
2.80 0.16 | Unsatisfactory
4.50 0.25
7.10 0.40
11.20 0.62
18.00 1.00
28.00 1.56
45.00 2.51

Fig 7.10: ISO limit of vibration level. The column named “Class I’ in the above table is shown the
operating condition of our 0.187 KW motor.

B. Vibration Level After Tight Fittings Of The Bolts And Alignment Of The Shaft

After shaft alignment and mechanical tight fittings of the bolts, the obtained values of vibration at
bearing 2 and bearing 3 are comparatively lower than the shaft misalignment and mechanical looseness.
The following curves which are found during the experiment show the decreased vibration levels at
bearing 2 and 3. These decreased vibrations levels at that point are not satisfied with the 1SO limit
because of the lack of sufficient damper materials and unfixed of the setup base with the ground.

Spectrum plot with amplitude and frequency data at 2" bearing
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>

Fig 7.11: Vibration level of sensor A at bearing 2 7(alrighmréhrt‘_ah_d- mechanical tight fittings).
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Fig 7.12: Vibration level of sensor B at bearing 2 (alignment and mechanical tight fittings).
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Fig 7.13: Vibration level of sensor C at bearing 2 (alignment and mechanical tight fittings).

Spectrum plot with amplitude and frequency data at 3™ bearing
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Fig 7.14: Vibration level of sensor A at bearirng'3 (alignment and mechanical tight fittings).
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Fig 7.15: Vibration level of sensor B at bearing 3 (alignment anb mechanical tight fittings).
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Fig 7.16: Vibration level of sensor C at bearing 3 (alignment and mechanical tight fittings).

C. Vibration Level Due To Mass Unbalancing

Discordance between the mass axis and the rotation axis characterizes unbalance. The centrifugal force
generated by rotation is the result of the unequal mass of the load and the radial acceleration caused by
rotation. This causes a force on the bearings and/or bearing vibration. Because of the moment caused by
the imbalance, the shaft vibrates in a way that is typical of rotating structures. Uniform circular cross-
sections of the shafts are chosen, although the method developed is applicable to shafts with any cross-
section having an axis of symmetry. The circular disk has a uniform thickness, with the center of mass

coinciding with the axes of the corresponding shafts.

vibration levels are shown below:

Spectrum plot with amplitude and frequency data at 3" bearing

Before mass unbalancing of the rotating load,
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Fig 7.17: Vibration level of sensor A at bearing 3 (mass unbalance).
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Fig 7.18: Vibration level of sensor B at bearing 3 (mass unbalance).
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Fig 7.19: Vibration level of sensor C at bearing 3 (mass unbalance).
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C. Vibration Level After Mass Balancing

Using the trial and error method we gradually use an external different amount of masses at the different
angles of the rotating load (impeller). Because the polar plot analysis identified the problem as a mass
imbalance in the overhung impeller, a corrected mass was used to balance the rotor and reduce the
intensity of vibration to a satisfactory level. The peak and phase data in Fig. 7.19 refer to the reason for
such a high level of vibration. As a result, this value is primarily considered when considering the issue,
and polar graph paper is used to reveal the unbalance issue.

The correct weight is calculated using the following formula.

Length of vector 1 ¥ Trial weight
Length of vector 3

Correct weight =

The length is measured with a fine scale ruler and the weight by a digital weighing scale. The
measurements are as follows- The length of vector 1 was 6¢cm; the trial weight was 4.1gram; the length
of vector 3 was 3 cm

So, the calculated correct weight required for balancing is,

6cm x3.1gm

Correct weight = T om = 6.2 gram
Table 1: Trial and error method for mass balancing
Trial weight (gram) Phase angle (degree)
(@.3.5 270
(b). 3.5 180
(c). 4.3 225
(d). 6.2 220 (desired angle)

IJFMR23011483 Volume 5, Issue 1, January-February 2023 12
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Fig 7.20: Balancing mass added

in the rotaiting load.

9

After mass balancing the vibration level is reduced, spectrum plot with amplitude and frequency data at

3rd bearing is shown below:
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Fig 7.21: Vibration level of sensor A at bea{ring 3 (mass balance).
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Fig 7.22: Vibration level of sensor A at bearing 3 (mass balance).
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Fig 7.23: Vibration level of sensor C at bearing 3 (mass balance).

Table 2: Overall experimental data from graphs

Vibration Overall Overall data Overall
. . data of data of
measuring Conditions of sensor B
location sensor A (mm/sec) sensor C
(mm/sec) (mm/sec)
Bearing 2 Shaft 4.78 9.36 2.86
misalignment &
mechanical
looseness
Bearing 2 Shaft alignment & 2.52 7.10 2.17
mechanical tight
Bearing 3 Shaft 3.65 10.22 2.54
misalignment &
mechanical
looseness
Bearing 3 Shaft alignment & 1.89 7.23 2.22
mechanical tight
Bearing 3 Mass unbalancing 3.97 7.12 2
Bearing 3 Mass balancing 0.67 5.08 1.21

Discussion & Conclusion

A ball bearing having a regular bore was fabricated and was used for supporting the shaft at each end.
This vibration-generating setup has been developed to measure vibration levels at different points by
using a vibration analyzer. The vibration level of the experimental setup before and after shaft
misalignment and mechanical looseness were investigated experimentally and compared with recorded
data. From this, it can be concluded as follows:
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Mechanical looseness of the bolts, misalignment of the shaft, and mass unbalancing of the load-
generated vibration. Which indicates the health condition of the machine.

This vibration analyzer measures vibration level by using three types of sensors in spectrum and
waveform. Where the measured vibration level is crossed the 1ISO limit. After alignment of the shaft,
tightening the bolts mechanically, and mass balancing reduced the vibration level.

Further reduction of vibration level, is also used damper materials under the base of the setup.

The experimented vibration level at bearing 2 before shaft misalignment and mechanical looseness is
4.786 mm/sec, 9.355 mm/sec, and 2.86 mm/sec. After making the required changes the vibration
levels are 2.52 mm/sec, 7.10 mm/sec, and 2.17 mm/sec respectively.

Similarly, experimented results for bearing 3 before and after shaft misalignment and mechanical
looseness are 3.65 mm/sec, 10.22 mm/sec, 2.55 mm/sec, and 1.89 mm/sec, 7.23 mm/sec, 2.22
mm/sec respectively.

Mass balancing was also done on bearing 3 where the vibration before mass balancing is 3.97
mm/sec, 7.12 mm/sec, and 2 mm/sec. After mass balancing these vibrational values are 0.67 mm/sec,
5.08 mm/sec, and 1.21 mm/sec respectively.
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